Ecuaciones de primer grado con una incognita definicion

Ecuaciones de primer grado con una incognita definicion

Hoja de trabajo de ecuaciones de primer grado

Veamos ahora qué es una ecuación de primer grado y cómo resolver ecuaciones de primer grado de todo tipo: con paréntesis, con denominadores y con paréntesis y denominadores a la vez, con ejercicios resueltos paso a paso.

En esta ecuación, en el primer miembro tenemos la incógnita elevada a 2 y elevada a 3. En el segundo miembro la incógnita está elevada a 1. Recuerda que si la incógnita no tiene exponente significa que está elevada a 1:

Veamos un ejemplo de cómo se resuelven las ecuaciones sencillas de primer grado. Si entendemos perfectamente este tipo de ecuaciones, será más fácil comprender cómo se resuelven otras ecuaciones de primer grado más complicadas (con paréntesis, denominadores, potencias…).

Mediante la transposición de términos, tenemos que pasar los términos que llevan x al primer miembro y los números que no llevan x al segundo miembro.  Los términos que ya están en el miembro correspondiente no deben tocarse.

Ahora, reescribimos el primer miembro, con los términos con x ya recolocados y el 14 que ya está en el segundo miembro. Lo único que tenemos que hacer es pasar el 2, que es ADDING y pasa HOLDING al segundo miembro:

Ecuación de primer grado en una variable

Hay muchos métodos para resolver ecuaciones. La elección del método adecuado depende generalmente del grado de la ecuación, es decir, del exponente de la incógnita. Las ecuaciones más sencillas son las de primer grado. Cuanto más alto sea el grado de la ecuación, más compleja será.

El objetivo es encontrar el peso de esas cajas. Empecemos por plantear el problema que tendrá una ecuación de primer grado y la incógnita `x` representa el peso de una de las cajas (la solución es posible sólo si todas las cajas tienen el mismo peso). En el plato izquierdo de la balanza tenemos `2x + 500 + 100` y en el plato derecho tenemos `x + 250 + 500`. Teniendo en cuenta que se trata de una ecuación de primer grado, el método más habitual es tratar de aislar la incógnita dentro del primer miembro y luego encontraremos su valor. Hay que destacar que en el caso de la balanza podemos añadir o quitar a los platos el mismo peso y mantendrán el equilibrio. Según la analogía, en una ecuación podemos sumar o restar ambos miembros por una constante y siempre obtendremos una ecuación equivalente. Aquí está la solución (abreviada):

Ejercicios de ecuaciones de primer grado con respuestas

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos «atajos» que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Ejercicios de ecuaciones de primer grado pdf

Veamos ahora qué es una ecuación de primer grado y cómo resolver ecuaciones de primer grado de todo tipo: con paréntesis, con denominadores y con paréntesis y denominadores a la vez, con ejercicios resueltos paso a paso.

En esta ecuación, en el primer miembro tenemos la incógnita elevada a 2 y elevada a 3. En el segundo miembro la incógnita está elevada a 1. Recuerda que si la incógnita no tiene exponente significa que está elevada a 1:

Veamos un ejemplo de cómo se resuelven las ecuaciones sencillas de primer grado. Si entendemos perfectamente este tipo de ecuaciones, será más fácil comprender cómo se resuelven otras ecuaciones de primer grado más complicadas (con paréntesis, denominadores, potencias…).

Mediante la transposición de términos, tenemos que pasar los términos que llevan x al primer miembro y los números que no llevan x al segundo miembro.  Los términos que ya están en el miembro correspondiente no deben tocarse.

Ahora, reescribimos el primer miembro, con los términos con x ya recolocados y el 14 que ya está en el segundo miembro. Lo único que tenemos que hacer es pasar el 2, que es ADDING y pasa HOLDING al segundo miembro: